
NAG C Library Function Document

nag_ztrtri (f07twc)

1 Purpose

nag_ztrtri (f07twc) computes the inverse of a complex triangular matrix.

2 Specification

void nag_ztrtri (Nag_OrderType order, Nag_UploType uplo, Nag_DiagType diag,
Integer n, Complex a[], Integer pda, NagError *fail)

3 Description

nag_ztrtri (f07twc) forms the inverse of a complex triangular matrix A. Note that the inverse of an upper
(lower) triangular matrix is also upper (lower) triangular.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: uplo – Nag_UploType Input

On entry: indicates whether A is upper or lower triangular as follows:

if uplo ¼ Nag Upper, A is upper triangular;

if uplo ¼ Nag Lower, A is lower triangular.

Constraint: uplo ¼ Nag Upper or Nag Lower.

3: diag – Nag_DiagType Input

On entry: indicates whether A is a non-unit or unit triangular matrix as follows:

if diag ¼ Nag NonUnitDiag, A is a non-unit triangular matrix;

if diag ¼ Nag UnitDiag, A is a unit triangular matrix; the diagonal elements are not
referenced and are assumed to be 1.

Constraint: diag ¼ Nag NonUnitDiag or Nag UnitDiag.

4: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

f07 – Linear Equations (LAPACK) f07twc

[NP3645/7] f07twc.1

5: a½dim� – Complex Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: the n by n triangular matrix A. If uplo ¼ Nag Upper, A is upper triangular and the
elements of the array below the diagonal are not referenced; if uplo ¼ Nag Lower, A is lower
triangular and the elements of the array above the diagonal are not referenced. If
diag ¼ Nag UnitDiag, the diagonal elements of A are not referenced, but are assumed to be 1.

On exit: A is overwritten by A�1, using the same storage format as described above.

6: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array a.

Constraint: pda � maxð1; nÞ.

7: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

NE_SINGULAR

aðhvaluei; hvalueiÞ is zero, and the matrix A is singular.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed inverse X satisfies

jXA� Ij � cðnÞ�jXj jAj;
where cðnÞ is a modest linear function of n, and � is the machine precision.

Note that a similar bound for jAX � Ij cannot be guaranteed, although it is almost always satisfied.

f07twc NAG C Library Manual

f07twc.2 [NP3645/7]

The computed inverse satisfies the forward error bound

jX � A�1j � cðnÞ�jA�1j jAj jXj:
See Du Croz and Higham (1992).

8 Further Comments

The total number of real floating-point operations is approximately 4
3
n3.

The real analogue of this function is nag_dtrtri (f07tjc).

9 Example

To compute the inverse of the matrix A, where

A ¼

4:78þ 4:56i 0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i
2:00� 0:30i �4:11þ 1:25i 0:00þ 0:00i 0:00þ 0:00i
2:89� 1:34i 2:36� 4:25i 4:15þ 0:80i 0:00þ 0:00i

�1:89þ 1:15i 0:04� 3:69i �0:02þ 0:46i 0:33� 0:26i

1
CCA

0
BB@ :

9.1 Program Text

/* nag_ztrtri (f07twc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, n, pda;
Integer exit_status=0;
Nag_UploType uplo_enum;
Nag_MatrixType matrix;

NagError fail;
Nag_OrderType order;
/* Arrays */
char uplo[2];
Complex *a=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f07twc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);

#ifdef NAG_COLUMN_MAJOR
pda = n;

#else
pda = n;

f07 – Linear Equations (LAPACK) f07twc

[NP3645/7] f07twc.3

#endif

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, Complex)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
Vscanf(" ’ %1s ’%*[^\n] ", uplo);
if (*(unsigned char *)uplo == ’L’)

{
uplo_enum = Nag_Lower;
matrix = Nag_LowerMatrix;

}
else if (*(unsigned char *)uplo == ’U’)

{
uplo_enum = Nag_Upper;
matrix = Nag_UpperMatrix;

}
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}
if (uplo_enum == Nag_Upper)

{
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
}

Vscanf("%*[^\n] ");
}

else
{

for (i = 1; i <= n; ++i)
{

for (j = 1; j <= i; ++j)
Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);

}
Vscanf("%*[^\n] ");

}

/* Compute inverse of A */
f07twc(order, uplo_enum, Nag_NonUnitDiag, n, a, pda, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07twc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print inverse */
x04dbc(order, matrix, Nag_NonUnitDiag, n, n, a, pda,

Nag_BracketForm, "%7.4f", "Inverse", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:
if (a) NAG_FREE(a);

return exit_status;
}

f07twc NAG C Library Manual

f07twc.4 [NP3645/7]

9.2 Program Data

f07twc Example Program Data
4 :Value of N
’L’ :Value of UPLO

(4.78, 4.56)
(2.00,-0.30) (-4.11, 1.25)
(2.89,-1.34) (2.36,-4.25) (4.15, 0.80)
(-1.89, 1.15) (0.04,-3.69) (-0.02, 0.46) (0.33,-0.26) :End of matrix A

9.3 Program Results

f07twc Example Program Results

Inverse
1 2 3 4

1 (0.1095,-0.1045)
2 (0.0582,-0.0411) (-0.2227,-0.0677)
3 (0.0032, 0.1905) (0.1538,-0.2192) (0.2323,-0.0448)
4 (0.7602, 0.2814) (1.6184,-1.4346) (0.1289,-0.2250) (1.8697, 1.4731)

f07 – Linear Equations (LAPACK) f07twc

[NP3645/7] f07twc.5 (last)

	f07twc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	diag
	n
	a
	pda
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_SINGULAR
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

