f07 — Linear Equations (LAPACK) f07twe

NAG C Library Function Document

nag_ztrtri (f07twc)

1 Purpose

nag_ztrtri (f07twc) computes the inverse of a complex triangular matrix.

2 Specification

void nag_ztrtri (Nag_OrderType order, Nag_UploType uplo, Nag_DiagType diag,
Integer n, Complex al[l, Integer pda, NagError *fail)

3 Description

nag_ztrtri (f07twc) forms the inverse of a complex triangular matrix A. Note that the inverse of an upper
(lower) triangular matrix is also upper (lower) triangular.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1-19

5 Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_ RowMajor or Nag_ColMajor.

2: uplo — Nag_UploType Input
On entry: indicates whether A is upper or lower triangular as follows:
if uplo = Nag Upper, A is upper triangular;
if uplo = Nag_Lower, A is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: diag — Nag DiagType Input
On entry: indicates whether A is a non-unit or unit triangular matrix as follows:
if diag = Nag_NonUnitDiag, A is a non-unit triangular matrix;

if diag = Nag UnitDiag, A is a unit triangular matrix; the diagonal elements are not
referenced and are assumed to be 1.

Constraint: diag = Nag NonUnitDiag or Nag_UnitDiag.

4: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

[NP3645/7] 07twe. 1

f07twe NAG C Library Manual

5: a[dim] — Complex Input/Output
Note: the dimension, dim, of the array a must be at least max(1, pda x n).

If order = Nag_ColMajor, the (4, j)th element of the matrix A is stored in a[(j — 1) x pda + 4 — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in a[(i — 1) x pda+ j — 1].
On entry: the n by n triangular matrix A. If uplo = Nag _Upper, A is upper triangular and the
elements of the array below the diagonal are not referenced; if uplo = Nag _Lower, A is lower
triangular and the elements of the array above the diagonal are not referenced. If
diag = Nag_UnitDiag, the diagonal elements of A are not referenced, but are assumed to be 1.
On exit: A is overwritten by A7 using the same storage format as described above.

6: pda — Integer Input
On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array a.

Constraint. pda > max(1,n).

7: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT
On entry, n = (value).

Constraint: n > 0.

On entry, pda = (value).

Constraint: pda > 0.
NE_INT 2

On entry, pda = (value), n = {value).
Constraint: pda > max(1,n).

NE_SINGULAR

a({value), (value)) is zero, and the matrix A is singular.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

7

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

Accuracy

The computed inverse X satisfies

[XA = I < c(n)e|X] [A],

where ¢(n) is a modest linear function of n, and € is the machine precision.

Note that a similar bound for |AX — I| cannot be guaranteed, although it is almost always satisfied.

07twe.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07twe

The computed inverse satisfies the forward error bound
X — A7 < e(n)el A7 A |X].
See Du Croz and Higham (1992).

8 Further Comments

The total number of real floating-point operations is approximately §n3 .

The real analogue of this function is nag_dtrtri (f07tjc).

9 Example

To compute the inverse of the matrix A, where

4.78 + 4.56i 0.00 + 0.00¢ 0.00 4+ 0.00¢z 0.00 4 0.00¢
2.00-0.30c —4.1141.25¢ 0.00 4+ 0.00¢ 0.00 4 0.00z
289 —-134¢ 236 —-4.25 4.15+0.80¢ 0.00 4 0.00¢
—1.89 +1.15¢ 0.04 -3.69¢ —0.02+0.46: 0.33 —0.26¢

A:

9.1 Program Text

/* nag_ztrtri (f07twc) Example Program.
* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)

{
/* Scalars *x/
Integer i, j, n, pda;
Integer exit_status=0;
Nag_UploType uplo_enum;
Nag_MatrixType matrix;

NagError fail;
Nag_OrderType order;
/* Arrays */

char uplo[2];
Complex *a=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f07twc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("sx["\n] ");

Vscanf ("$1d%*[*\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pda = n;
#else

pda = n;

[NP3645/7] f07twe.3

f07twe NAG C Library Manual

#endif

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, Complex)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

¥

/* Read A from data file =*/
Vscanf (" ' %l1s ’'%*[*\n] ", uplo);

if (*(unsigned char *)uplo == 'L’)
{
uplo_enum = Nag_Lower;
matrix = Nag_LowerMatrix;
¥
else if (#*(unsigned char #*)uplo == 'U’)
{

uplo_enum = Nag_Upper;
matrix = Nag_UpperMatrix;

}
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}
if (uplo_enum == Nag_Upper)
{
for (i = 1; i <= n; ++1)
{
for (j = 1i; j <= n; ++3)
Vscanf (" (%1f , %1f)", &A(i,j).re, &A(i,]J).im);
}
Vscanf ("sx["\n] ");
¥
else
{
for (i = 1; i <= n; ++1i)
{
for (j = 1; j <= 1i; ++3)
Vscanf (" (%1f , %1f)", &A(i,j).re, &A(1i,3).im);
}
Vscanf ("sx[“\n] ");
}

/* Compute inverse of A *x/
fO7twc(order, uplo_enum, Nag_NonUnitDiag, n, a, pda, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf ("Error from fO07twc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print inverse */

x04dbc(order, matrix, Nag_NonUnitDiag, n, n, a, pda,
Nag_BracketForm, "%7.4f", "Inverse", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
3
END:

if (a) NAG_FREE (a);

return exit_status;

f07twe.4 [NP3645/7]

f07 — Linear Equations (LAPACK)

9.2 Program Data

fO07twc Example Program Data

4

rTor

.78, 4.56
.00,-0.30
.89,-1.34
.89, 1.15

/-\,-\/-\A
NN
NP

(-4.11, 1.25)

(2.36,-4.25) (4.15, 0.80)
(0.04,-3.69) (-0.02, 0.46)

9.3 Program Results

fO7twc Example Program Results

Inverse

0.0032,
0.7602,

Dw N R

0.1905
0.2814

2

1

0.1095,-0.1045)

0.0582,-0.0411) (-0.2227,-0.0677)
)
)

(0.1538,-0.2192)
(1.6184,-1.4346)

f07twce

:Value of N
:Value of UPLO

(0.33,-0.20) :End of matrix A

(0.2323,-0.0448)
(0.1289,-0.2250) (1.8697, 1.4731)

[NP3645/7]

f07twe.5 (last)

	f07twc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	diag
	n
	a
	pda
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_SINGULAR
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

